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Abstract 

On the basis of Laue's dynamical theory of X-ray 
diffraction the non-negativity condition for the Karle- 
Hauptman determinant is obtained. For the three- 
beam case the validity of the triplet phase relation of 
direct methods is displayed. The unitary relation and 
dynamical X-ray scattering amplitude from crystals 
are used to derive a Sayre-type equation, which for 
identical atoms reduces to Hughes's equation. These 
results allow the interpretation of relations between 
structure amplitudes in direct methods on the basis 
of dynamical theory. 

Introduction 

The theory of direct methods (DM) has proved very 
successful in crystal-structure determination since its 
development in the early 1950s. There are now a great 
number of papers on DM in the literature. The most 
fundamental contributions to the theory of DM are 
discussed in the review by Woolfson (1987), in which 
the evolution of DM is examined 'from birth to 
maturity'. The theory of DM is purely mathematical. 
Therefore the physical meaning of DM relationships 
is an important problem. 

Let us consider the basic assumptions forming the 
foundations of DM. Firstly, it is a hypothesis of the 
atomicity of matter. The real crystal, with continuous 
electron density p(r), is replaced by an ideal one, the 
unit cell of which consists of N discrete non-vibrating 
point atoms located at the maxima of p(r) (Haupt- 
man, 1986). This allows, instead of the structure factor 
F(H),  the use of the normalized structure factors 
E(H)  and U(H). The second principle, the condition 
of non-negativity of the electron density function, is 
exploited in determinantal inequalities (Karle & 
Hauptman, 1950; Goedkoop, 1950) and also in the 
derivation of Sayre's equation (Sayre, 1952). Thirdly, 
the main assumption of DM is that the values of 
xh+yk+zl  are uniformly distributed on a 
trigonometric circle, where h, k and l may take any 
integer values for fixed x, y and z or x, y and z may 
run over all values in the unit cell for given integers 
h, k, l (Kitaigorodskii, 1961). The presence of a crystal 
as a scattering object is taken into account in DM 
through integer values of Miller indices. 

Since DM use a geometrical structure factor and 
its modifications it is of no importance how intensities 
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are measured and how the [F(H) I are calculated from 
them. Additionally, if DM do not use any assumptions 
about the size and perfection of a crystal then they 
are also valid for a large ideal crystal. Therefore we 
can use dynamical theory more generally even though 
DM are used mainly for the structure determination 
of crystals under conditions of kinematical X-ray 
diffraction. In this paper an attempt is made to derive 
some fundamental relationships of DM and to 
explain them on the basis of the dynamical theory of 
X-ray diffraction. 

Derivation of DM relations on the basis of dynamical 
theory 

Up to now the interpretation of phase relations has 
been limited to a graphical explanation by the con- 
sideration of electron density waves in a crystal 
(Golovastikov & Belov, 1955; Stothard, 1978; Schenk, 
1979, 1981). Such a geometrical approach gives a 
visible result but in no way represents the real process 
of X-ray diffraction in a crystal. 

It is known that the most important relation used 
in DM is the triplet or ~2 relation 

~p (Hi) + q~ (n2) + q~ (Ha) --- 0 (1) 

for large values of E3 = N-U2[E(HI)E(H2)E(H3)[ 
with the condition 

HI + H2 + Ha = 0. (2) 

Relation (1) specifies a three-phase structure invariant 
as it is independent of the choice of origin. At the 
same time, (2) is a condition for double diffraction 
or the three-beam case in dynamical X-ray diffraction 
theory (Pinsker, 1978; Chang, 1984). The analogy 
between triplet relations of DM and three-beam 
dynamical diffraction was noticed by Schagen, 
Schenk & Post (1981) and recently was used to calcu- 
late the number of triplet relations (Mishnev & 
Belyakov, 1992). 

In the process of double scattering by a crystal, 
two different crystallographic planes H1 and H2 are 
simultaneously in a reflecting position. At the same 
time, a beam, reflected from plane H2 hits another 
plane where the Bragg condition is again fulfilled and 
a double-reflected beam arises (from plane H3), which 
coincides in direction with the beam from plane Ha. 
Moreover, the indices of the reflection planes are 
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related by condition (2). Fig. 1, taken from the paper 
of Post (1979), illustrates the double-reflection 
geometry in direct and reciprocal space. The three- 
beam case can always be realized by rotating a crystal 
around the reciprocal vector H~. 

The fundamental equations of the dynamical 
theory of X-ray diffraction on crystals were given by 
yon Laue (1960): 

[ ( k 2 - k 2 ) / k E ] D , = ~ . X H _ L D L ,  (3) 
L 

where k and ka are the wave numbers of the incident 
and reflected beams, XH-L = -eEF(  H - L)/(  7rmz'2 V0) 
are coefficients in the expansion of the dielectric 
susceptibility in a Fourier series, ~, is the frequency 
of the X-rays in vacuum, Vo is the unit-cell volume, 
DH is the electric displacement and F ( H - L )  is a 
structure amplitude. If polarization is not considered 
the condition for nontrivial solution of the funda- 
mental equations (3) is 

F ( 0 ) - A  F ( - H  t) F ( -H2)  • . .  F ( - H . )  

F(HI) F ( 0 ) - A  F ( H I - H 2 )  - ' '  F ( H I - H . )  

F(H2) F(H2-H,) F(0)-X . . .  F(HE-H,) =0 

F(H,,) F (H . -H , )  F ( H , , - H 2 ) ' "  F(0)-A 

where 

A = (Trm~ '2 Vol e2)[ (k2/k2H) - 1 ]. 

(4) 
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Fig. 1. Simultaneous three-beam diffraction in direct and 
reciprocal space. 

It is clear that the values A are the eigenvalues of 
the Karle-Hauptman matrix IIF(H,-H~)II. The ratio 
kH/k is a refractive index, which for X-rays is less 
than unity. Hence the eigenvalues A are positive. 
Since the determinant of a matrix is equal to the 
product of its eigenvalues, 

det IIF(H,-Hj)II-- lel Ak, (5) 
k = l  

the Karle-Hauptman determinant cannot be negative. 
This confirms the result of Karle & Hauptman (1950). 
Thus one can interpret the non-negativity of the deter- 
minant (5) as a consequence of the X-ray refractive 
index being less than unity. 

For the case of three strong waves, expanding the 
determinant (4) and denoting F ( 0 ) - A  by % we get 
a dispersion equation 

r 3 - ~[] F(H~)I 2 + I F(-H2)I  2 + I F ( H 2 -  H~)[ 2] 

+ 2[F(H~)F(-H2)F(H:-H~)I  

x cos [q~(H~) + q~(-H2) + q~(H2- H~)] = 0. (6) 

Equation (6) represents a condition for a combina- 
tion of three phases, the sum of indices of which is 
zero, i.e. it determines the value of the three-phase 
structure invariant. Unknown magnitudes of 7" do not 
permit the use of (6) immediately for phase determi- 
nation. Nevertheless, (6) can be used for qualitative 
confirmation of the triplet formula (1). To do this, 
let us rewrite (6) in the form 

cos @3-- {z[lF(n~)l 2 + IF( -n2) l  2 

+ I F ( H 2 -  H,)I] - r 3} 

x [ 2 I F ( H I ) F ( - H 2 ) F ( H 2 - H I ) I ]  -~ (7) 

where q03 = ¢(H1) + ~( -H2)  + q~(H2- H1). We shall 
fix the values of IF(H1)[ and ~" and map the function 
cos qb 3 relative to IF(-H2)[/F(O) and [F(HE-  
H~)I/F(0). Since ]cos ~ 3 [ -  < 1 one obtains a limited 
region of allowed values of variables. Fig. 2 shows 
the cos q~3 map for ~-/F(0) = 0.4 and IF(H~)[/F(O)= 
0.3. The symbols - ,  K, H , . . . , A ,  0 , . . . , 9 , +  rep- 
resent the values of cos (~)3 f r o m  - 1  to + 1 in incre- 
ments of 0.1. The boundary separating positive values 
(region A) from negative (region B) is an arc of the 
circle of radius [ 2 _  [ F ( H I ) 1 2 ] - I / 2  w i t h  center at the 
origin. Fig. 2 shows that for large magnitudes of 
structure factors cos ~3 -~ 1. If the sign of ~" is reversed, 
the sign of cos q~3 in regions A and B will be changed 
too. However, it is easy to show from the non-nega- 
tivity condition (5) that the case c o s  t ~  3 ~-- -1  for large 
values of IF(H)] cannot be realized. Thus the dynami- 
cal theory equations for strong reflections give a 
similar result to that of triplet relation (1) of DM. 

Further evidence in favor of the suggested physical 
interpretation of DM is the direct derivation of a 
Sayre-type equation from the dynamical effects of 
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diffraction. It is well known that the unitary relation 
of classical electromagnetic theory (Saxon, 1955; 
Gerber & Karplus, 1972) 

,4(k', k) -.4*(k, k') 

=(ik/ETr) ~,4t(k",k')A(k",k) d12 (8) 

is valid for the dynamical scattering amplitude but 
not for the kinematical one. In (8), A(k', k) is a 
scattering-amplitude tensor and the integration on 
the fight-hand side is over all the directions of k", the 
length of this vector being kept fixed at the value 
Ik"l=lk' l=lkl Gerber & Karplus (1973) suggested 
that the X-ray scattering amplitude of a crystal be 
written so that the radiation reaction of free electrons 
was accounted for. In this case the scattering ampli- 
tude for a crystal can be written in the following 
approximation, which satisfies the unitary relation. 

t~11 e2 COS 2 0 0 
,,~(k', k )=  ~ iq)mc2 - e  2 U(k', k), (9) 

0 (1 + iq)mc 2 

where O is the Bragg angle, q = 4~,e2/3mc 3, U(k', k) 
is a unitary structure amplitude. The Bragg condition 
k ' - k = 2 r r H  leads to the dependence of amplitude 
only on the difference of wave vectors and we have 
U(k ' ,k )=  U(H). Substituting the expression for 
A22(k', k) into (8) after renormalization we obtain the 
Sayre-type equation 

(10) 

0.5~ +++ 
++÷++999999999999++++++++  

+9999888888888899999999999++++++++  
• . +999888888777788888899999999999999++++++  
• 99888888877??7777???888888899999999999999++++  
°0011122233344445555666677778888889999999999999+++  

-KHGECBA012233444555666777888888999999999999++  
-KHGECBA01233445556667778888899999999999++  

0.41 - -KHGFECBO123445566677788889999999999++  
-KHGFEDCBA1234556667778888899999999++  

-KHGFEDCB012345566777888888999999++  
-KHHGFECBA1234556677788888899999++  

-KHHGFECBA012345566777888889999+÷  
-KHGFEDCBA01234566777788889999++ 

-KHGFEDCBA0123456677788888999+ 
-KKHGFDCBA012345667778888999+ 

0 .3 .  -KHGFEDCBA1234566777888999+ 
-KHGFEDCB0123450778888999÷ 

-KHGFEDCB12345667788999÷ 
-KKHGFDB0124556778899++ 

-KKHGFDB0243506778~39+ 
-KKHGFDBA13455678899+ 

-KKIlGFDB024556778999+ 
-KKHGFDCAI356678999+ 

0 . 2 .  -KHGFEDBO135678999+ 
-KHGFEBA46788999* 

-KHGEBA03678999+ 
-KHGFDB048899** 

-Y~IGFDB27899++ 
-KHFCA03899++ 

-HGECA3799++ 
-HFDB0489++ 

0 .1 .  -KECAI89+ 
-HCA289+ 

HCA0?9+ 
KDA59+ 

HA39 
KF09 

DO 
0 

o ............. 62i .......... 621 .......... 61; .......... ;i; "''° ................ 0.5 

Fig. 2. The cos ~3 map from the dispersion equation. 

where U(H) corresponds to the primary, U(K) the 
secondary and U ( H - K )  the cooperative reflection. 
The summation in (10) is performed over all possible 
simultaneous reflections for a given primary reflection 
U(H). For crystal structures with identical atoms 
E ( H ) =  N1/2U(H), then 

E I u(K)l 2= N, 
K 

where N is the number of atoms in the unit cell and 
n is the number of terms in the summation. For 
(E 2) = 1, (10) reduces to 

E ( H ) =  N'I2(E(K)E(H-K))K ( l l a )  

o r  

U(H)=  N(U(K)U(H-K))K. ( l lb)  

Equations (11 a, b) correspond to Hughes's (1953) 
equation. 

Concluding remarks 

In DM theory reflections are considered separately, 
which is consistent with the kinematical theory of 
diffraction. This corresponds to the assumption of the 
accidental nature of structure factors in DM. The 
necessity of the existence of relations between struc- 
ture amplitudes is substantiated in DM theory by (1) 
the condition of non-negativity of the electron density 
function which imposes restrictions on the Fourier 
coefficients in the expansion ofp(r) and (2) the redun- 
dancy of the problem since the number of measured 
intensities by far exceeds the number of unknown 
coordinates. 

In the present paper, Sayre-type equations and a 
non-negativity condition for the Karle-Hauptman 
determinant are derived on the basis of the dynamical 
theory of X-ray diffraction. Previously, these relation- 
ships were obtained by different methods. The 
approach presented allows a dynamical interpretation 
of phase relations of DM to be given. In the dynamical 
theory the existence of relations between structure 
amplitudes arises naturally by the interference of 
X-rays in a crystal. This effect is used in experimental 
methods for direct phase determination from multiple 
Bragg reflection. However, dynamical theory has not 
been used until now for the derivation of equations 
for structure amplitudes. It is possible that further 
use of dynamical theory will lead to new relations 
for the phase determination of structure amplitudes. 

References 

CHANG, S. L. (1984). Multiple Diffraction of X-rays in Crystals. 
Berlin: Springer-Verlag. 

GERBER, R. B. & KARPLUS, M. (1972). J. Chem. Phys. 56, 1921- 
1936. 

GERBER, R. B. & KARPLUS, M. (1973). Unpublished. 
GOEDKOOP, J. A. (1950). Acta Cryst. 3, 374-378. 



A. F. MISHNEV AND S. V. BELYAKOV 263 

GOLOVASTIKOV, N. I. & BELOV, N. V. (1955). Dokl. Akad. Nauk 
SSSR, 104, 540-542. 

HAUPTMAN, H. (1986). Chem. Scr. 26, 277-286. 
HUGHES, E. W. (1953). Acta Cryst. 6, 871. 
KARLE, J. & HAUPTMAN, H. (1950). Acta Cryst. 3, 181-187. 
KITAIGORODSKII, A. I. (1961). The Theory of Crystal Structure 

Analysis. New York: Consultants Bureau. 
MISHNEV, A. F. & BELYAKOV, S. V. (1992). Kristallografiya. In 

the press. 
LAUE, M. VON (1960). R6ntgenstrahl-Interferenzen. Frankfurt am 

Main: Akademische Verlag. 

PINSKER, Z. G. (1978). Dynamical Scattering of X-rays in Crystals. 
Berlin: Springer-Verlag. 

POST, B. (1979). Acta Cryst. A35, 17-21. 
SAXON, D. S. (1955). Phys. Rev. 100, 1771-1775. 
SAYRE, D. (1952). Acta Cryst. 5, 60-65. 
SCHAGEN, J. D., SCHENK, H. t~ POST, B. (1981). Acta Cryst. A37, 

C326. 
SCHENK, H. (1979). J. Chem. Educ. 56, 383-384. 
SCHENK, H. (1981). Acta Cryst. A37, 573-578. 
STOTHARD, P. n.  (1978). Acta Cryst. A34, 421-427. 
WOOLFSON, M. M. (1987). Acta Cryst. A43, 593-612. 

Acta Cryst. (1992). A48, 263-266 

Unusual Diffraction of Type B Influenza Virus Neuraminidase Crystals 

BY MING Luo* 

Center for Macromolecular Crystallography and Department of Microbiology, 
University of Alabama at Birmingham, University Station, Birmingham, Alabama 35294, USA 

W. GRAEME LAVER 

John Curtin School of Medical Research, Australia National University, Canberra, ACT 2601, Australia 

AND GILLIAN AIR 

Department of Microbiology, University of Alabama at Birmingham, University Station, 
Birmingham, Alabama 35294, USA 

(Received 25 April 1991; accepted 11 October 1991) 

Abstract 

An unusual X-ray diffraction pattern by tetragonal 
crystals of a type B influenza virus neuraminidase 
was observed in that the odd-I reflections were miss- 
ing or diffuse while the even-I reflections were sharp 
and strong. A statistical analysis showed that an error 
(e) in the spacing of successive planes of 
neuraminidase molecules was randomly distributed 
along the c direction, which resulted in such an 
unusual diffraction pattern. The error e follows the 
Bernoullian distribution and may be caused by a 
flexible loop on the top surface of the neuraminidase. 

Introduction 

Neuraminidase (NA) is a glycoprotein found on the 
lipid envelope of the influenza virus. Upon virus 
attachment to the host cell receptor, the neur- 
aminidase cleaves off terminal sialic acid residues 
from the polysaccharides of the cellular receptor via 
hydrolysis of the a-ketosidic linkages. This cleavage 
of sialic acids from its receptor, its virus hemag- 
glutinin and from mucin facilitates transportation of 
virions from the site of infection and the departure 
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of the mature progeny virions (Burnet & Stone, 1947). 
The protein has a subunit molecular weight of 50 000 
daltons and exists in a tetrameric form both on the 
viral surface and as free molecules in solution. The 
enzymatically active heads of NA (missing about 80 
amino acids from the N terminus) can be removed 
from the viral surface by protease cleavage and sub- 
sequently purified for crystallization. 

The NA crystals 

NA from type B influenza virus was crystallized in 
different crystalline forms according to Bossart, Babu, 
Cook, Air & Laver (1988), Lin, Luo, Laver, Air, Smith 
& Webster (1990) and Air, Laver, Luo, Stray, Legrone 
& Webster (1990). Among them, crystals from four 
different virus strains are tetragonal, body centered. 
Form I was grown with NA from the B/Hong- 
Kong/73 virus by vapor diffusion of hanging drops 
against 1.9 M potassium phosphate. Crystals 
appeared as rectangular prisms. X-ray diffraction 
photographs were taken using radiation from both a 
Pdgaku K200 rotating anode and the Cornell High- 
Energy Synchrotron Source (CHESS). By precession 
and cone-axis photography, the space group of form 
I was determined as 1422, with unit-cell dimensions 
a = b = 123.0, c = 165.0 ~. Form II was grown with 
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